

Selective Oxidative Decomposition of Ammonia in Water to Nitrogen Catalyzed by Platinum-supported Titania

Junji Taguchi, Teruyuki Nakato, and Toshio Okuhara*

Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810

(Received October 27, 1998; CL-980823)

Selective oxidative decomposition of NH_3 (or NH_4^+) in water to N_2 was achieved with 0.5 wt%Pt/TiO₂ catalyst at 433 K under 8 atm of O_2 without alkalization of the solution; NH_3 of 1000 ppm was exclusively converted to N_2 and undesirable products, NO_2^- and NO_3^- in the solution and N_2O in the gas phase were little formed.

Ammonia in waste-water is a serious pollutant which brings about eutrophication of river, lake, etc.;¹ its removal is thus becoming important. The removal of NH_3 has conventionally been conducted by biological treatment, adsorption, thermal incineration, etc. As a more economical and environmentally benign technology, catalytic removal of NH_3 in waste-water using solid catalysts has recently attracted attention. NH_3 has been oxidatively decomposed over solid catalysts³⁻⁵ after transferring it from waste-water to a gas phase by air stripping,² although this process is still costly. Kurita Water Ind. Ltd. has commercialized a new process, in which NH_4^+ reacts with NO_2^- to form N_2 over Pt/TiO₂ in waste-water.⁶ This system requires precise adjustment of the concentrations of the reactants.

A desirable method is selective oxidative decomposition of NH_3 with O_2 (or air) to N_2 (eq. (1)). There are some reports

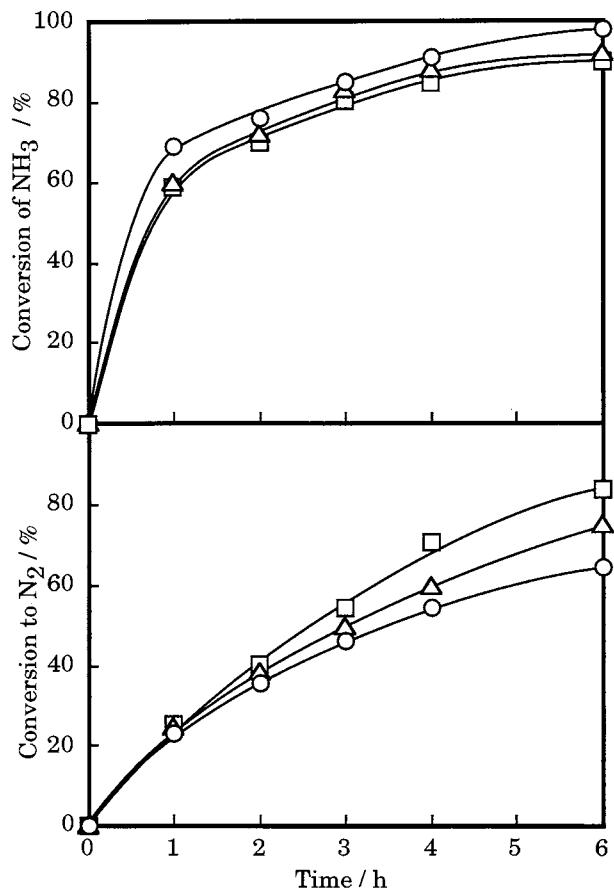
about wet-air-oxidation (WAO) of NH_3 along this line. Imamura et al.⁷ reported WAO of NH_3 (1000 ppm) over Mn-Ce oxides at 536 K and 40 atm of air. A large part of NH_3 disappeared at pH = 12, while NO_2^- and NO_3^- ions were formed with the total concentration of about 50 ppm. Chakchouk et al.⁸ confirmed the above result. Recently Qin and Aika⁹ found that RuO₂/Al₂O₃ exhibited the highest activity for WAO of NH_3 among various supported catalysts. NH_3 (1500 ppm) disappeared entirely at 503 K and pH = 12 under 15 atm of air.

However, these WAO systems still have two unsolved problems; (i) there is no evidence for the selective formation of N_2 ; the selectivity has not been determined experimentally, and (ii) it is necessary to alkalize the solution to accelerate the reaction. Quantitative analysis of N_2 formed is indispensable, and the excess alkalization of solution should be avoided, since such alkalized solution must be neutralized for disposal in environmentally acceptable way.

Here we wish to report the selective O_2 oxidation of NH_3 (NH_4^+) in water catalyzed by a Pt/TiO₂ catalyst at a moderate temperature, 433 K, without alkalization of the solution.¹⁰

Pt-supported catalysts containing 0.5 wt%Pt were prepared from H_2PtCl_6 and TiO₂ (P-25, 46 m²·g⁻¹), ZrO_2 (by calcination of $\text{Zr}(\text{OH})_4$ at 773 K, 55 m²·g⁻¹), or $\gamma\text{-Al}_2\text{O}_3$ (JRC-ALO-4, 166 m²·g⁻¹). Pt-H-ZSM-5 (Pt: 0.5 wt%) was prepared by an ion-exchange method from H-ZSM-5 (Tosoh, HSZ-860HOA, 410 m²·g⁻¹) and $\text{Pt}(\text{NH}_3)_4\text{Cl}_2$. All the catalysts were pretreated in a flow of O_2 and then in a flow of H_2 at 723 K for each 3 h and

were stored under ambient conditions.


Catalytic oxidation of NH_3 (NH_4^+) was performed in a glass autoclave (250 cm³, Taiatsu Techno TEM-V200). Hereafter, NH_3 and/or NH_4^+ in the solution will be described as NH_3 . An aqueous solution (150 cm³) of NH_4Cl (containing 1000 ppm in weight as NH_3 (8.8 mmol)) and a catalyst (1 g) were charged into the reactor. An O_2 gas was introduced into the reactor to give 5 atm of pressure at 298 K (about 100 cm³ (21 mmol)). The reactor was heated up to 433 K and kept at this temperature with stirring; the oxygen pressure became about 8 atm at this temperature.

A small portion of the gas was sampled into a syringe through a needle valve, and was analyzed by GC with columns of Molecular Sieves 5A (for N_2 and O_2) and Porapak Q (for N_2O). NH_3 , NO_2^- and NO_3^- in the aqueous phase were analyzed quantitatively by a flow injection analysis system (FIA) (consisting of a Soma Optics S-3250 detector and a Sanuki Industry FI-710 analyzer equipped with a RX-703T pump and a R-5000C reactor) after withdrawing a small amount of liquid. After the filtration and drying (at room temperature) of the catalyst used at the first run, the number of N atom remained on the surface was determined by elementary analysis.

It was found that a key point to proceed the reaction is vigorous stirring the solution at both the upper and the bottom portions of the reactor to make a nearly uniform suspension in which the catalyst powder is well fluidized under the reaction conditions. A blank test showed that the decrease in NH_3 was only about 5% in the absence of catalyst under the O_2 .

Figure 1 shows time courses of the conversion of NH_3 (the upper) and the conversion to N_2 (the bottom) over 0.5 wt%Pt/TiO₂, where the conversions of NH_3 and to N_2 are defined as $100 \times (\text{mol of } \text{NH}_3 \text{ which disappeared})/(\text{mol of } \text{NH}_3 \text{ present initially})$ and $200 \times (\text{mol of } \text{N}_2 \text{ formed})/(\text{mol of } \text{NH}_3 \text{ present initially})$, respectively. For some cases, the reaction was repeated three times. Between the runs, solid NH_4Cl was added to reform 1000 ppm NH_3 solution at room temperature. At the first run over 0.5 wt%Pt/TiO₂, about 70% and 98.5% of NH_3 disappeared after 1 h and 6 h, respectively. The time courses of the second and third runs were similar to that of the first run, suggesting that the catalyst deactivation was small under the reaction conditions. The conversion to N_2 was 65% at 6 h, while the conversion of NH_3 was 98.5%. It is noted that the yield of N_2 increased to 83% at 6 h of the third run.

Table 1 summarizes the yields of products in the oxidation of NH_3 over various Pt-supported catalysts. Over 0.5 wt%Pt/TiO₂, N_2 was the main product, and N_2O , NO_2^- , and NO_3^- little formed; the concentrations of NO_2^- and NO_3^- corresponded to 1.3 and 2.4 ppm at 6 h at the first run. On the other hand, 0.5 wt%Pt/Al₂O₃ was not efficient; the N_2 yield was 26% and 43% of 6 h for the first and second runs, respectively. Since the amounts of remaining NH_3 and NO_2^- , NO_3^- , and N_2O formed were also very small over 0.5 wt%Pt/Al₂O₃, undetected nitrogen

Figure 1. Time courses of the conversion of NH₃ (the upper) and the conversion to N₂ (the bottom) in oxidative decomposition of NH₃ over 0.5wt%Pt/TiO₂ at 433 K. NH₃; 1000 ppm (8.8 mmol), O₂; 5 atm at 298 K (21 mmol), and catalyst; 1 g. O: 1st run, Δ: 2nd run, □: 3rd run.

atoms would be present as certain N-containing species on the surface. It should be emphasized that TiO₂ was a superior support in the N₂ yield among the oxide supports used in the present study. The selectivities to N₂ in the products of both the gas and liquid phases were higher than 99.6% for all cases.

The N-containing species adsorbed on the catalysts were examined by IR (KBr method). Both Pt/TiO₂ and Pt/Al₂O₃ after the first runs showed sharp peaks at 1383 cm⁻¹ which are assigned to the $\nu_{as}(NO)$ band due to NO₃⁻ species.^{11,12} Absorption bands due to NH₃ and NH₄⁺ (3100~3330 cm⁻¹ ($\nu(NH)$) and 1390~1480 cm⁻¹ ($\delta(NH)$))^{11,12} were not detected on both the catalysts. In fact, when 0.5 wt%Pt/Al₂O₃ was added to the aqueous solution of NH₄Cl (1000 ppm) at 433 K under the N₂ atmosphere, no IR peak due to NH₃ and NH₄⁺ on the surface was observed and N atoms were not detected in the catalyst by elementary analysis after the catalyst was washed with water at room temperature. Thus the surface N-containing species during the catalytic reaction would be mainly NO₃⁻ species. As shown in Table 1, the N atom was well balanced for all cases if the

Table 1. Activity of Pt-supported catalysts for selective oxidation of NH₃ in water to N₂

Catalysts ^a	Run ^b	Conv./% ^c	Yield / % ^d				N-surface / % ^e
			N ₂	N ₂ O	NO ₂ ⁻	NO ₃ ⁻	
Pt/TiO ₂	1	98.5	65	0	0.1	0.1	38.4 (102) ^f
	2	92.0	76	-	0.1	0.1	-
	3	90.1	83	-	0.2	0.1	-
Pt/Al ₂ O ₃	1	99.8	26	0	0	0	62.0 (88) ^f
	2	99.9	43	-	0.1	0.1	-
	3	99.9	44	0	0.1	0.1	-
Pt/ZrO ₂	1	98.5	54	0	0	0	45.0 (99) ^f
	2	92.1	71	-	0.1	0	-
Pt-H-ZSM-5	1	94.1	34	0	0	0	55.0 (89) ^f

^aPt: 0.5 wt%. ^bThe reaction was repeated by the addition of NH₄Cl. ^c100 × (mol of NH₃ which disappeared)/(mol of NH₃ present initially). Reaction conditions: NH₃, 1000 ppm; O₂, 5 atm (at 298 K); catalyst, 1 g; 433 K, 6 h. ^dBased on N atom. ^e100 × (mol of N atom remaining on the surface)/(mol of NH₃ present initially)(see text). ^fFigures in parentheses are 100 × [(mol of 2N₂ + 2N₂O + NO₂⁻ + NO₃⁻) + (mol of N atom remaining on the surface) + (mol of remaining NH₃)]/(mol of NH₃ present initially).

amounts of N atom on the surfaces were taken into account. To elucidate the role of the N-containing species on the surface in the reaction is an important subject of the next step.

This work was supported in part by Steel Industry Foundation for the Advancement of Environmental Protection Technology.

References and Notes

- P. I. Riggan, R. N. Lockwood, and E. N. Lopez, *Environ. Sci. Technol.*, **19**, 971 (1985).
- T. P. O'Farell, F. P. Frauson, A. F. Cassel, and D. F. Bishop, *J. Water Pollut. Control Fed.*, **44**, 1527 (1972).
- Y. Li and J. N. Armor, *Appl. Catal. B*, **13**, 131 (1997).
- R. Ohnishi, H. Suzuki, and M. Ichikawa, Preprints of Annual Meeting of Catalysis Society of Japan, Ehime, September 1998, Abstr., No. 3D417.
- H. Nishiguchi, H. Tanaka, T. Ishihara, and Y. Takita, Preprints of Annual Meeting of Catalysis Society of Japan, Ehime, September 1998, Abstr., No. 3D419.
- I. Joko and T. Nakahara, *Shokubai*, **39**, 590 (1998).
- S. Imamura, A. Doi, and S. Ishida, *Ind. Eng. Chem., Prod. Res. Dev.*, **24**, 75 (1985).
- M. Chakchouk, G. Deiber, J. N. Foussard, and H. Debellefontaine, *Environ. Technol.*, **16**, 645 (1995).
- J. Qin and K. Aika, *Appl. Catal. B*, **16**, 261 (1998).
- J. Taguchi, T. Nakato, and T. Okuhara, Preprints of Annual Meeting of Catalysis Society of Japan, Ehime, September 1998, Abstr., No. 4D422.
- K. Nakamoto, "Infrared and Raman Spectra of Inorganic and Coordination Compounds," 3rd ed., Wiley, New York (1978).
- N. B. Colthup, L. H. Daly, and S. E. Wiberley, "Introduction to Infrared and Raman Spectroscopy," Academic Press, New York (1964).